Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 176
Filter
1.
Virulence ; 13(1): 1697-1712, 2022 12.
Article in English | MEDLINE | ID: covidwho-20244441

ABSTRACT

Autophagy plays an important role in defending against invading microbes. However, numerous viruses can subvert autophagy to benefit their replication. Porcine epidemic diarrhoea virus (PEDV) is an aetiological agent that causes severe porcine epidemic diarrhoea. How PEDV infection regulates autophagy and its role in PEDV replication are inadequately understood. Herein, we report that PEDV induced complete autophagy in Vero and IPEC-DQ cells, as evidenced by increased LC3 lipidation, p62 degradation, and the formation of autolysosomes. The lysosomal protease inhibitors chloroquine (CQ) or bafilomycin A and Beclin-1 or ATG5 knockdown blocked autophagic flux and inhibited PEDV replication. PEDV infection activated AMP-activated protein kinase (AMPK) and c-Jun terminal kinase (JNK) by activating TGF-beta-activated kinase 1 (TAK1). Compound C (CC), an AMPK inhibitor, and SP600125, a JNK inhibitor, inhibited PEDV-induced autophagy and virus replication. AMPK activation led to increased ULK1S777 phosphorylation and activation. Inhibition of ULK1 activity by SBI-0206965 (SBI) and TAK1 activity by 5Z-7-Oxozeaenol (5Z) or by TAK1 siRNA led to the suppression of autophagy and virus replication. Our study provides mechanistic insights into PEDV-induced autophagy and how PEDV infection leads to JNK and AMPK activation.


Subject(s)
Porcine epidemic diarrhea virus , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Animals , Autophagy , Beclin-1 , Chloroquine , MAP Kinase Kinase Kinases , Porcine epidemic diarrhea virus/physiology , Protease Inhibitors , RNA, Small Interfering , Swine , Virus Replication
2.
Cells ; 12(9)2023 04 28.
Article in English | MEDLINE | ID: covidwho-2318072

ABSTRACT

As autophagy can promote or inhibit inflammation, we examined autophagy-inflammation interplay in COVID-19. Autophagy markers in the blood of 19 control subjects and 26 COVID-19 patients at hospital admission and one week later were measured by ELISA, while cytokine levels were examined by flow cytometric bead immunoassay. The antiviral IFN-α and proinflammatory TNF, IL-6, IL-8, IL-17, IL-33, and IFN-γ were elevated in COVID-19 patients at both time points, while IL-10 and IL-1ß were increased at admission and one week later, respectively. Autophagy markers LC3 and ATG5 were unaltered in COVID-19. In contrast, the concentration of autophagic cargo receptor p62 was significantly lower and positively correlated with TNF, IL-10, IL-17, and IL-33 at hospital admission, returning to normal levels after one week. The expression of SARS-CoV-2 proteins NSP5 or ORF3a in THP-1 monocytes caused an autophagy-independent decrease or autophagy-inhibition-dependent increase, respectively, of intracellular/secreted p62, as confirmed by immunoblot/ELISA. This was associated with an NSP5-mediated decrease in TNF/IL-10 mRNA and an ORF3a-mediated increase in TNF/IL-1ß/IL-6/IL-10/IL-33 mRNA levels. A genetic knockdown of p62 mimicked the immunosuppressive effect of NSP5, and a p62 increase in autophagy-deficient cells mirrored the immunostimulatory action of ORF3a. In conclusion, the proinflammatory autophagy receptor p62 is reduced inacute COVID-19, and the balance between autophagy-independent decrease and autophagy blockade-dependent increase of p62 levels could affect SARS-CoV-induced inflammation.


Subject(s)
COVID-19 , Inflammation , Humans , Autophagy , COVID-19/pathology , Inflammation/metabolism , Interleukin-10/blood , Interleukin-17/blood , Interleukin-33/blood , Interleukin-6/blood , RNA, Messenger , SARS-CoV-2
3.
Int J Mol Sci ; 24(9)2023 Apr 23.
Article in English | MEDLINE | ID: covidwho-2315623

ABSTRACT

At present it is well-defined that autophagy is a fundamental process essential for cell life but its pro-viral and anti-viral role has been stated out with the COVID pandemic. However, viruses in turn have evolved diverse adaptive strategies to cope with autophagy driven host defense, either by blocking or hijacking the autophagy machinery for their own benefit. The mechanisms underlying autophagy modulation are presented in the current review which summarizes the accumulated knowledge on the crosstalk between autophagy and viral infections, with a particular emphasizes on SARS-CoV-2. The different types of autophagy related to infections and their molecular mechanisms are focused in the context of inflammation. In particular, SARS-CoV-2 entry, replication and disease pathogenesis are discussed. Models to study autophagy and to formulate novel treatment approaches and pharmacological modulation to fight COVID-19 are debated. The SARS-CoV-2-autophagy interplay is presented, revealing the complex dynamics and the molecular machinery of autophagy. The new molecular targets and strategies to treat COVID-19 effectively are envisaged. In conclusion, our finding underline the importance of development new treatment strategies and pharmacological modulation of autophagy to fight COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Antiviral Agents/metabolism , Autophagy
4.
FASEB J ; 37(5): e22919, 2023 05.
Article in English | MEDLINE | ID: covidwho-2306604

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes injury to multiple organ systems, including the brain. SARS-CoV-2's neuropathological mechanisms may include systemic inflammation and hypoxia, as well as direct cell damage resulting from viral infections of neurons and glia. How the virus directly causes injury to brain cells, acutely and over the long term, is not well understood. In order to gain insight into this process, we studied the neuropathological effects of open reading frame 3a (ORF3a), a SARS-CoV-2 accessory protein that is a key pathological factor of the virus. Forced ORF3a brain expression in mice caused the rapid onset of neurological impairment, neurodegeneration, and neuroinflammation-key neuropathological features found in coronavirus disease (COVID-19, which is caused by SARS-CoV-2 infection). Furthermore, ORF3a expression blocked autophagy progression in the brain and caused the neuronal accumulation of α-synuclein and glycosphingolipids, all of which are linked to neurodegenerative disease. Studies with ORF3-expressing HeLa cells confirmed that ORF3a disrupted the autophagy-lysosomal pathway and blocked glycosphingolipid degradation, resulting in their accumulation. These findings indicate that, in the event of neuroinvasion by SARS-CoV-2, ORF3a expression in brain cells may drive neuropathogenesis and be an important mediator of both short- and long-term neurological manifestations of COVID-19.


Subject(s)
COVID-19 , Neurodegenerative Diseases , Humans , Animals , Mice , SARS-CoV-2 , COVID-19/pathology , Neurodegenerative Diseases/pathology , HeLa Cells , Open Reading Frames , Sphingolipids , Brain/pathology , Homeostasis , Lysosomes , Autophagy
6.
J Nanobiotechnology ; 21(1): 69, 2023 Feb 28.
Article in English | MEDLINE | ID: covidwho-2288660

ABSTRACT

BACKGROUND: The rapid increase in production and application of carbon nanotubes (CNTs) has led to wide public concerns in their potential risks to human health. Single-walled CNTs (SWCNTs), as an extensively applied type of CNTs, have shown strong capacity to induce pulmonary fibrosis in animal models, however, the intrinsic mechanisms remain uncertain. RESULTS: In vivo experiments, we showed that accelerated senescence of alveolar type II epithelial cells (AECIIs) was associated with pulmonary fibrosis in SWCNTs-exposed mice, as well as SWCNTs-induced fibrotic lungs exhibited impaired autophagic flux in AECIIs in a time dependent manner. In vitro, SWCNTs exposure resulted in profound dysfunctions of MLE-12 cells, characterized by impaired autophagic flux and accelerated cellular senescence. Furthermore, the conditioned medium from SWCNTs-exposed MLE-12 cells promoted fibroblast-myofibroblast transdifferentiation (FMT). Additionally, restoration of autophagy flux with rapamycin significantly alleviated SWCNTs-triggered senescence and subsequent FMT whereas inhibiting autophagy using 3-MA aggravated SWCNTs-triggered senescence in MLE-12 cells and FMT. CONCLUSION: SWCNTs trigger senescence of AECIIs by impairing autophagic flux mediated pulmonary fibrosis. The findings raise the possibility of senescence-related cytokines as potential biomarkers for the hazard of CNTs exposure and regulating autophagy as an appealing target to halt CNTs-induced development of pulmonary fibrosis.


Subject(s)
Nanotubes, Carbon , Pulmonary Fibrosis , Humans , Animals , Mice , Nanotubes, Carbon/toxicity , Pulmonary Fibrosis/chemically induced , Alveolar Epithelial Cells , Autophagy , Fibroblasts
7.
APMIS ; 131(4): 161-169, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2288010

ABSTRACT

Autophagy is one of the important mechanisms in cell maintenance, which is considered associated with different pathological conditions such as viral infections. In this current study, the expression level and polymorphisms in some of the most important genes in the autophagy flux in COVID-19 patients were evaluated. This cross-sectional study was conducted among 50 confirmed COVID-19 patients and 20 healthy controls. The COVID-19 patients were divided into a severe group and a mild group according to their clinical features. The expression levels of ATG5, ATG16L1, LC3, and BECN1 were evaluated by the 2-∆∆CT method and beta-actin as the internal control. The polymorphisms of the ATG5 (rs506027, rs510432) and ATG16L1 (rs2241880 or T300A) were evaluated by the Sanger sequencing following the conventional PCR. The mean age of the included patients was 58.3 ± 17.9 and 22 (44%) were female. The expression levels of the LC3 were downregulated, while BECN1 and ATG16L1 genes represent an upregulation in COVID-19 patients. The polymorphism analysis revealed the ATG16L1 rs2241880 and AGT5 rs506027 polymorphism frequencies are statistically significantly different between COVID-19 and Healthy controls. The autophagy alteration represents an association with COVID-19 pathogenesis and severity. The current study is consistent with the alteration of autophagy elements in COVID-19 patients by mRNA expression-level evaluation. Furthermore, ATG16L1 rs2241880 and AGT5 rs506027 polymorphisms seem to be important in COVID-19 and are highly suggested for further investigations.


Subject(s)
COVID-19 , Genetic Predisposition to Disease , Humans , Female , Male , Cross-Sectional Studies , Polymorphism, Single Nucleotide , Autophagy-Related Proteins/genetics , COVID-19/genetics , Autophagy/genetics
8.
Mol Pharm ; 20(4): 2276-2287, 2023 04 03.
Article in English | MEDLINE | ID: covidwho-2262380

ABSTRACT

To deal with the broad spectrum of coronaviruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), that threaten human health, it is essential to not only drugs develop that target viral proteins but also consider drugs that target host proteins/cellular processes to protect them from being hijacked for viral infection and replication. To this end, it has been reported that autophagy is deeply involved in coronavirus infection. In this study, we used airway organoids to screen a chemical library of autophagic modulators to identify compounds that could potentially be used to fight against infections by a broad range of coronaviruses. Among the 80 autophagy-related compounds tested, cycloheximide and thapsigargin reduced SARS-CoV-2 infection efficiency in a dose-dependent manner. Cycloheximide treatment reduced the infection efficiency of not only six SARS-CoV-2 variants but also human coronavirus (HCoV)-229E and HCoV-OC43. Cycloheximide treatment also reversed viral infection-induced innate immune responses. However, even low-dose (1 µM) cycloheximide treatment altered the expression profile of ribosomal RNAs; thus, side effects such as inhibition of protein synthesis in host cells must be considered. These results suggest that cycloheximide has broad-spectrum anti-coronavirus activity in vitro and warrants further investigation.


Subject(s)
COVID-19 , Coronavirus 229E, Human , Humans , SARS-CoV-2 , Cycloheximide/pharmacology , Autophagy
9.
Int J Mol Sci ; 24(5)2023 Mar 03.
Article in English | MEDLINE | ID: covidwho-2278165

ABSTRACT

The coronavirus disease pandemic, which profoundly reshaped the world in 2019 (COVID-19), and is currently ongoing, has affected over 200 countries, caused over 500 million cumulative cases, and claimed the lives of over 6.4 million people worldwide as of August 2022. The causative agent is severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Depicting this virus' life cycle and pathogenic mechanisms, as well as the cellular host factors and pathways involved during infection, has great relevance for the development of therapeutic strategies. Autophagy is a catabolic process that sequesters damaged cell organelles, proteins, and external invading microbes, and delivers them to the lysosomes for degradation. Autophagy would be involved in the entry, endo, and release, as well as the transcription and translation, of the viral particles in the host cell. Secretory autophagy would also be involved in developing the thrombotic immune-inflammatory syndrome seen in a significant number of COVID-19 patients that can lead to severe illness and even death. This review aims to review the main aspects that characterize the complex and not yet fully elucidated relationship between SARS-CoV-2 infection and autophagy. It briefly describes the key concepts regarding autophagy and mentions its pro- and antiviral roles, while also noting the reciprocal effect of viral infection in autophagic pathways and their clinical aspects.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Autophagy , Antiviral Agents/pharmacology , Lysosomes/metabolism
10.
Emerg Microbes Infect ; 12(1): 2195020, 2023 Dec.
Article in English | MEDLINE | ID: covidwho-2255344

ABSTRACT

SARS-CoV-2, the causative virus of COVID-19, continues to threaten global public health. COVID-19 is a multi-organ disease, causing not only respiratory distress, but also extrapulmonary manifestations, including gastrointestinal symptoms with SARS-CoV-2 RNA shedding in stool long after respiratory clearance. Despite global vaccination and existing antiviral treatments, variants of concern are still emerging and circulating. Of note, new Omicron BA.5 sublineages both increasingly evade neutralizing antibodies and demonstrate an increased preference for entry via the endocytic entry route. Alternative to direct-acting antivirals, host-directed therapies interfere with host mechanisms hijacked by viruses, and enhance cell-mediated resistance with a reduced likelihood of drug resistance development. Here, we demonstrate that the autophagy-blocking therapeutic berbamine dihydrochloride robustly prevents SARS-CoV-2 acquisition by human intestinal epithelial cells via an autophagy-mediated BNIP3 mechanism. Strikingly, berbamine dihydrochloride exhibited pan-antiviral activity against Omicron subvariants BA.2 and BA.5 at nanomolar potency, providing a proof of concept for the potential for targeting autophagy machinery to thwart infection of current circulating SARS-CoV-2 subvariants. Furthermore, we show that autophagy-blocking therapies limited virus-induced damage to intestinal barrier function, affirming the therapeutic relevance of autophagy manipulation to avert the intestinal permeability associated with acute COVID-19 and post-COVID-19 syndrome. Our findings underscore that SARS-CoV-2 exploits host autophagy machinery for intestinal dissemination and indicate that repurposed autophagy-based antivirals represent a pertinent therapeutic option to boost protection and ameliorate disease pathogenesis against current and future SARS-CoV-2 variants of concern.


Subject(s)
COVID-19 , Hepatitis C, Chronic , Humans , SARS-CoV-2 , Antiviral Agents/pharmacology , Post-Acute COVID-19 Syndrome , RNA, Viral , Antibodies, Neutralizing , Autophagy , Antibodies, Viral , Spike Glycoprotein, Coronavirus , Membrane Proteins
11.
Viruses ; 15(2)2023 01 27.
Article in English | MEDLINE | ID: covidwho-2254689

ABSTRACT

Transmissible gastroenteritis virus (TGEV) is a member of the alphacoronavirus genus, which has caused huge threats and losses to pig husbandry with a 100% mortality in infected piglets. TGEV is observed to be recombining and evolving unstoppably in recent years, with some of these recombinant strains spreading across species, which makes the detection and prevention of TGEV more complex. This paper reviews and discusses the basic biological properties of TGEV, factors affecting virulence, viral receptors, and the latest research advances in TGEV infection-induced apoptosis and autophagy to improve understanding of the current status of TGEV and related research processes. We also highlight a possible risk of TGEV being zoonotic, which could be evidenced by the detection of CCoV-HuPn-2018 in humans.


Subject(s)
Alphacoronavirus , Transmissible gastroenteritis virus , Humans , Animals , Swine , Apoptosis , Autophagy , Receptors, Virus
12.
Int J Mol Sci ; 24(4)2023 Feb 18.
Article in English | MEDLINE | ID: covidwho-2284578

ABSTRACT

Increases in non-communicable and auto-immune diseases, with a shared etiology of defective autophagy and chronic inflammation, have motivated research both on natural products in drug discovery fields and on the interrelationship between autophagy and inflammation. Within this framework, the tolerability and protective effects of a wheat-germ spermidine (SPD) and clove eugenol (EUG) combination supplement (SUPPL) were investigated on inflammation status (after the administration of lipopolysaccharide (LPS)) and on autophagy using human Caco-2 and NCM460 cell lines. In comparison to the LPS treatment alone, the SUPPL + LPS significantly attenuated ROS levels and midkine expression in monocultures, as well as occludin expression and mucus production in reconstituted intestinal equivalents. Over a timeline of 2-4 h, the SUPPL and SUPPL + LPS treatments stimulated autophagy LC3-11 steady state expression and turnover, as well as P62 turnover. After completely blocking autophagy with dorsomorphin, inflammatory midkine was significantly reduced in the SUPPL + LPS treatment in a non-autophagy-dependent manner. After a 24 h timeline, preliminary results showed that mitophagy receptor BNIP3L expression was significantly downregulated in the SUPPL + LPS treatment compared to the LPS alone, whereas conventional autophagy protein expression was significantly higher. The SUPPL shows promise in reducing inflammation and increasing autophagy to improve intestinal health.


Subject(s)
Autophagy , Eugenol , Spermidine , Humans , Caco-2 Cells , Eugenol/pharmacology , Inflammation , Lipopolysaccharides/pharmacology , Midkine , Spermidine/pharmacology
13.
PLoS Pathog ; 19(3): e1011201, 2023 03.
Article in English | MEDLINE | ID: covidwho-2281114

ABSTRACT

Autophagy plays an important role in the infectious processes of diverse pathogens. For instance, cellular autophagy could be harnessed by viruses to facilitate replication. However, it is still uncertain about the interplay of autophagy and swine acute diarrhea syndrome coronavirus (SADS-CoV) in cells. In this study, we reported that SADS-CoV infection could induce a complete autophagy process both in vitro and in vivo, and an inhibition of autophagy significantly decreased SADS-CoV production, thus suggesting that autophagy facilitated the replication of SADS-CoV. We found that ER stress and its downstream IRE1 pathway were indispensable in the processes of SADS-CoV-induced autophagy. We also demonstrated that IRE1-JNK-Beclin 1 signaling pathway, neither PERK-EIF2S1 nor ATF6 pathways, was essential during SADS-CoV-induced autophagy. Importantly, our work provided the first evidence that expression of SADS-CoV PLP2-TM protein induced autophagy through the IRE1-JNK-Beclin 1 signaling pathway. Furthermore, the interaction of viral PLP2-TMF451-L490 domain and substrate-binding domain of GRP78 was identified to activate the IRE1-JNK-Beclin 1 signaling pathway, and thus resulting in autophagy, and in turn, enhancing SADS-CoV replication. Collectively, these results not only showed that autophagy promoted SADS-CoV replication in cultured cells, but also revealed that the molecular mechanism underlying SADS-CoV-induced autophagy in cells.


Subject(s)
Endoplasmic Reticulum Chaperone BiP , Papain , Papain/metabolism , Beclin-1 , Peptide Hydrolases/metabolism , Autophagy , Signal Transduction , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism
14.
J Virol ; 97(1): e0161422, 2023 01 31.
Article in English | MEDLINE | ID: covidwho-2223572

ABSTRACT

Porcine epidemic diarrhea (PED) indicates the disease of the acute and highly contagious intestinal infection due to porcine epidemic diarrhea virus (PEDV), with the characteristics of watery diarrhea, vomiting, and dehydration. One of the reasons for diarrhea and death of piglets is PEDV, which leads to 100% mortality in neonatal piglets. Therefore, it is necessary to explore the interaction between virus and host to prevent and control PEDV. This study indicated that the host protein, pre-mRNA processing factor 19 (PRPF19), could be controlled by the signal transducer as well as activator of transcription 1 (STAT1). Thus, PEDV replication could be hindered through selective autophagy. Moreover, PRPF19 was found to recruit the E3 ubiquitin ligase MARCH8 to the N protein for ubiquitination. For the purpose of degradation, the ubiquitin N protein is acknowledged by the cargo receptor NDP52 and transported to autolysosomes, thus inhibiting virus proliferation. To conclude, a unique antiviral mechanism of PRPF19-mediated virus restriction was shown. Moreover, a view of the innate immune response and protein degradation against PEDV replication was provided in this study. IMPORTANCE The highly virulent porcine epidemic diarrhea virus (PEDV) emerged in 2010, and causes high mortality rates in newborn pigs. There are no effective and safe vaccines against the highly virulent PEDV. This virus has caused devastating economic losses in the pork industry worldwide. Studying the relationship between virus and host antiviral factors is important to develop the new antiviral strategies. This study identified the pre-mRNA processing factor 19 (PRPF19) as a novel antiviral protein in PEDV replication and revealed its viral restriction mechanisms for the first time. PRPF19 recruited the E3 ubiquitin ligase MARCH8 to the PEDV N protein for ubiquitination, and the ubiquitin N protein was acknowledged by the cargo receptor NDP52 and transported to autolysosomes for degradation. Our findings provide new insights in host antiviral factors PRPF19 that regulate the selective autophagy protein degradation pathway to inhibit PEDV replication.


Subject(s)
Capsid Proteins , Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Capsid Proteins/metabolism , Coronavirus Infections/immunology , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Porcine epidemic diarrhea virus/physiology , Swine , Swine Diseases/immunology , Swine Diseases/virology , Ubiquitin-Protein Ligases/metabolism , Ubiquitins , Virus Replication/genetics , Nuclear Proteins/metabolism , Autophagy
15.
Int Immunopharmacol ; 115: 109671, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2170546

ABSTRACT

Acute lung injury (ALI) is characterized by acute systemic inflammatory responses that may lead to severe acute respiratory distress syndrome (ARDS). The clinical course of ALI/ARDS is variable; however, it has been reported that lipopolysaccharides (LPS) play a role in its development. The fragile chromosomal site gene WWOX is highly sensitive to genotoxic stress induced by environmental exposure and is an important candidate gene for exposure-related lung disease research. However, the expression of WWOX and its role in LPS-induced ALI still remain unidentified. This study investigated the expression of WWOX in mouse lung and epithelial cells and explored the role of WWOX in LPS-induced ALI model in vitro and in vivo. In addition, we explored one of the possible mechanisms by which WWOX alleviates ALI from the perspective of autophagy. Here, we observed that LPS stimulation reduced the expression of WWOX and the autophagy marker microtubule-associated protein 1 light chain 3ß-II (MAP1LC3B/LC3B) in mouse lung epithelial and human epithelial (H292) cells. Overexpression of WWOX led to the activation of autophagy and inhibited inflammatory responses in LPS-induced ALI cells and mouse model. More importantly, we found that WWOX interacts with mechanistic target of rapamycin [serine/threonine kinase] (mTOR) and regulates mTOR and ULK-1 signaling-mediated autophagy. Thus, reduced WWOX levels were associated with LPS-induced ALI. WWOX can activate autophagy in lung epithelial cells and protect against LPS-induced ALI, which is partly related to the mTOR-ULK1 signaling pathway.


Subject(s)
Acute Lung Injury , Respiratory Distress Syndrome , Mice , Animals , Humans , Lipopolysaccharides/toxicity , TOR Serine-Threonine Kinases/metabolism , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Lung/metabolism , Inflammation/metabolism , Respiratory Distress Syndrome/metabolism , Autophagy , WW Domain-Containing Oxidoreductase/genetics , WW Domain-Containing Oxidoreductase/metabolism , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
16.
Autophagy ; 19(8): 2391-2392, 2023 Aug.
Article in English | MEDLINE | ID: covidwho-2187553

ABSTRACT

The precursors to mammalian autophagosomes originate from preexisting membranes contributed by a number of sources, and subsequently enlarge through intermembrane lipid transfer, then close to sequester the cargo, and merge with lysosomes to degrade the cargo. Using cellular and in vitro membrane fusion analyses coupled with proteomic and biochemical studies we show that autophagosomes are formed from a hybrid membrane compartment referred to as a prophagophore or HyPAS (hybrid preautophagosomal structure). HyPAS is initially LC3-negative and subsequently becomes an LC3-positive phagophore. The prophagophore emerges through fusion of RB1CC1/FIP200-containing vesicles, derived from the cis-Golgi, with endosomally derived ATG16L1 membranes. A specialized Ca2+-responsive apparatus controls prophagophore biogenesis and can be modulated by pharmacological agents such as SIGMAR1 agonists and antagonists including chloroquine. Autophagic prophagophore formation is inhibited during SARS-CoV-2 infection and is recapitulated by expression of SARS-CoV-2 nsp6. These findings show that mammalian autophagosomal prophagophores emerge via the convergence of secretory and endosomal pathways in a process that is targeted by microbial factors including coronaviral membrane proteins.Abbreviations: CLEM, correlative light and electron microscopy; CQ, chloroquine; HyPAS, hybrid preautophagosomal; strcuture/prophagophore; LC3, microtubule associated protein 1 light chain 3; RUPEX, a combination of RUSH and APEX2 systems; SARS-CoV-2, SARS-CoV-2 virus, causative agent of COVID19.


Subject(s)
Autophagosomes , COVID-19 , Humans , Animals , Autophagosomes/metabolism , Autophagy , Proteomics , SARS-CoV-2 , Mammals
17.
Oxid Med Cell Longev ; 2022: 1030238, 2022.
Article in English | MEDLINE | ID: covidwho-2194204

ABSTRACT

The effective remission of acute respiratory distress syndrome- (ARDS-) caused pulmonary fibrosis determines the recovery of lung function. Inositol can relieve lung injuries induced by ARDS. However, the mechanism of myo-inositol in the development of ARDS is unclear, which limits its use in the clinic. We explored the role and mechanism of myo-inositol in the development of ARDS by using an in vitro lipopolysaccharide- (LPS-) established alveolar epithelial cell inflammation model and an in vivo ARDS mouse model. Our results showed that inositol can alleviate the progression of pulmonary fibrosis. More significantly, we found that inositol can induce autophagy to inhibit the progression pulmonary fibrosis caused by ARDS. In order to explore the core regulators of ARDS affected by inositol, mRNA-seq sequencing was performed. Those results showed that transcription factor HIF-1α can regulate the expression of SLUG, which in turn can regulate the key gene E-Cadherin involved in cell epithelial-mesenchymal transition (EMT) as well as N-cadherin expression, and both were regulated by inositol. Our results suggest that inositol activates autophagy to inhibit EMT progression induced by the HIF-1α/SLUG signaling pathway in ARDS, and thereby alleviates pulmonary fibrosis.


Subject(s)
Pulmonary Fibrosis , Respiratory Distress Syndrome , Mice , Animals , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/chemically induced , Inositol/adverse effects , Signal Transduction , Respiratory Distress Syndrome/drug therapy , Cadherins/metabolism , Autophagy , Epithelial-Mesenchymal Transition , Lipopolysaccharides/pharmacology
18.
Microbiol Spectr ; 11(1): e0370722, 2023 02 14.
Article in English | MEDLINE | ID: covidwho-2193578

ABSTRACT

The SARS-CoV-2 virion is composed of four structural proteins: spike (S), nucleocapsid (N), membrane (M), and envelope (E). E spans the membrane a single time and is the smallest, yet most enigmatic of the structural proteins. E is conserved among coronaviruses and has an essential role in virus-mediated pathogenesis. We found that ectopic expression of E had deleterious effects on the host cell as it activated stress responses, leading to LC3 lipidation and phosphorylation of the translation initiation factor eIF2α that resulted in host translational shutoff. During infection E is highly expressed, although only a small fraction is incorporated into virions, suggesting that E activity is regulated and harnessed by the virus to its benefit. Consistently, we found that proteins from heterologous viruses, such as the γ1 34.5 protein of herpes simplex virus 1, prevented deleterious effects of E on the host cell and allowed for E protein accumulation. This observation prompted us to investigate whether other SARS-CoV-2 structural proteins regulate E. We found that the N and M proteins enabled E protein accumulation, whereas S did not. While γ1 34.5 protein prevented deleterious effects of E on the host cells, it had a negative effect on SARS-CoV-2 replication. The negative effect of γ1 34.5 was most likely associated with failure of SARS-CoV-2 to divert the translational machinery and with deregulation of autophagy. Overall, our data suggest that SARS-CoV-2 causes stress responses and subjugates these pathways, including host protein synthesis (phosphorylated eIF2α) and autophagy, to support optimal virus replication. IMPORTANCE In late 2019, a new ß-coronavirus, SARS-CoV-2, entered the human population causing a pandemic that has resulted in over 6 million deaths worldwide. Although closely related to SARS-CoV, the mechanisms of SARS-CoV-2 pathogenesis are not fully understood. We found that ectopic expression of the SARS-CoV-2 E protein had detrimental effects on the host cell, causing metabolic alterations, including shutoff of protein synthesis and mobilization of cellular resources through autophagy activation. Coexpression of E with viral proteins known to subvert host antiviral responses such as autophagy and translational inhibition, either from SARS-CoV-2 or from heterologous viruses, increased cell survival and E protein accumulation. However, such factors were found to negatively impact SARS-CoV-2 infection, as autophagy contributes to formation of viral membrane factories and translational control offers an advantage for viral gene expression. Overall, SARS-CoV-2 has evolved mechanisms to harness host functions that are essential for virus replication.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Autophagy , Protein Processing, Post-Translational , SARS-CoV-2/metabolism , Viral Proteins/genetics
19.
Front Immunol ; 13: 1092575, 2022.
Article in English | MEDLINE | ID: covidwho-2198921

ABSTRACT

Background: Autophagy refers to the process in which cells wrap their damaged organelles or unwanted proteins into a double-membrane structure and direct them to lysosomes for degradation. Autophagy can regulate many lung diseases such as pulmonary hypertension, acute lung injury, and lung cancer. However, few bibliometric studies on autophagy are available. The aim of the present study was to clarify the role of autophagy in lung diseases by bibliometric analysis. Methods: Publications were retrieved from the 2012-2021 Science Citation Index Expanded of Web of Science Core Collection on 20 September 2022. Bibliometrix package in R software was used for data retrieval. VOSviewer and CiteSpace were used to visualize the research focus and trend regarding the effect of autophagy on lung disease. Results: A total of 4,522 original articles and reviews on autophagy in lung diseases published between 2012 and 2021 were identified. China had the largest number of published papers and citations, whereas the United States (US) ranked first in the H-index and G-index. Moreover, cooperation network analysis showed close cooperation between the US, China, and some European countries, and the top 10 affiliates were all from these countries and regions. Bibliometric analysis showed that "autophagy" and "apoptosis" were the keywords with the highest frequency. During the past decade, most studies were concerned with basic research on pathways related to the regulatory role of autophagy in the inhibition and attenuation of lung diseases. Conclusion: The study of autophagy in lung diseases is still in the development stage. The information published in these articles has helped researchers understand further the hot spots and development trends in the field more and learn about the collaboration network information regarding authors, countries, and institutions, as well as the paper citation correlation. More studies have been performed to gain deeper insights into the pathogenesis of autophagy by focusing on the links and effects between various diseases. More recently, research in this field has paid increasing attention to the function of autophagy in COVID-19-related lung diseases.


Subject(s)
COVID-19 , Hypertension, Pulmonary , Lung Neoplasms , Humans , Autophagy , Bibliometrics
20.
J Mol Graph Model ; 119: 108396, 2023 03.
Article in English | MEDLINE | ID: covidwho-2159305

ABSTRACT

Autophagy is an important cellular process that triggers a coordinated action involving multiple individual proteins and protein complexes while SARS-CoV-2 (SARS2) was found to both hinder autophagy to evade host defense and utilize autophagy for viral replication. Interestingly, the possible significant stages of the autophagy biochemical network in relation to the corresponding autophagy-targeted SARS2 proteins from the different variants of concern (VOC) were never established. In this study, we performed the following: autophagy biochemical network design and centrality analyses; generated autophagy-targeted SARS2 protein models; and superimposed protein models for structural comparison. We identified 2 significant biochemical pathways (one starts from the ULK complex and the other starts from the PI3P complex) within the autophagy biochemical network. Similarly, we determined that the autophagy-targeted SARS2 proteins (Nsp15, M, ORF7a, ORF3a, and E) are structurally conserved throughout the different SARS2 VOC suggesting that the function of each protein is preserved during SARS2 evolution. Interestingly, among the autophagy-targeted SARS2 proteins, the M protein coincides with the 2 significant biochemical pathways we identified within the autophagy biochemical network. In this regard, we propose that the SARS2 M protein is the main determinant that would influence autophagy outcome in regard to SARS2 infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Autophagy , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL